Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 171: 21

Answer

$(a) \space 21.6\space kNs$ $(b)\space 10.8\space m/s$

Work Step by Step

(a) According to the graph, the impulse is the area under the curve with $\vec F$ the average force. $Impulse = F(\Delta t)$ According to the graph, we can assume that the, $F\approx100\times 0.27\space kN$ So we can write, $Impulse\approx100\times 0.27\times10^{3}N\times800\times10^{-3}$ $Impulse\approx 21.6\space kNs-(1)$ (b) We know that the $\vec F=\frac{\Delta \vec p}{\Delta t}$ $\rightarrow \vec F(\Delta t)=\Delta \vec P$ $(1)=\gt$ $21.6kNs=\Delta m\vec V$ $21.6\times10^{3}Ns=2000\space kg(0-V)$ $\frac{21.6}{2}\space m/s= -V$ $V=-10.8\space m/s$ Initial speed = 10.8 m/s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.