Chemistry and Chemical Reactivity (9th Edition)

Published by Cengage Learning
ISBN 10: 1133949649
ISBN 13: 978-1-13394-964-0

Chapter 17 Principles of Chemical Reactivity: Other Aspects of Aqueous Equilibria - Study Questions - Page 677c: 49

Answer

(a) $9.2 \times 10^{-9}M$ (b) $2.2 \times 10^{-6}g/L$

Work Step by Step

1. Write the $K_{sp}$ expression: $ AgI(s) \lt -- \gt 1Ag^{+}(aq) + 1I^-(aq)$ $8.5 \times 10^{-17} = [Ag^{+}]^ 1[I^-]^ 1$ 2. Considering a pure solution: $[Ag^{+}] = 1S$ and $[I^-] = 1S$ $8.5 \times 10^{-17}= ( 1S)^ 1 \times ( 1S)^ 1$ $8.5 \times 10^{-17} = 1S^ 2$ $8.5 \times 10^{-17} = S^ 2$ $ \sqrt [ 2] {8.5 \times 10^{-17}} = S$ $9.22 \times 10^{-9} = S$ - This is the molar solubility value for this salt. 3. Determine the molar mass of this compound (AgI): 107.87* 1 + 126.9* 1 = 234.77g/mol 4. Calculate the mass $mm(g/mol) = \frac{mass(g)}{n(mol)}$ $mm(g/mol) * n(mol) = mass(g)$ $ 234.77 * 9.22 \times 10^{-9} = mass(g)$ $2.2 \times 10^{-6} = mass(g)$ Therefore, the concentration in g/L = $2.2 \times 10^{-6} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.