Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 16 - Questions and Problems - Page 772: 16.64

Answer

Original acid molarity: $6.358 \times 10^{-6}M$.

Work Step by Step

1. Find $[H_3O^+]$ $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{- 5.26}$ $[H_3O^+] = 5.495 \times 10^{- 6}$ 2. Drawing the equilibrium (ICE) table we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [Conj. Base] = x$ -$[Acid] = [Acid]_{initial} - x$ 3. Now, use the Ka and x values and equation to find the initial concentration value. $Ka = \frac{[H_3O^+][Conj. Base]}{ [Initial Acid] - x}$ $ 3.5\times 10^{- 5}= \frac{[x^2]}{ [Initial Acid] - x}$ $ 3.5\times 10^{- 5}= \frac{( 5.495\times 10^{- 6})^2}{[Initial Acid] - 5.495\times 10^{- 6}}$ $[Initial Acid] - 5.495\times 10^{- 6} = \frac{ 3.02\times 10^{- 11}}{ 3.5\times 10^{- 5}}$ $[Initial Acid] - 5.495\times 10^{- 6} = 8.628\times 10^{- 7}$ $[Initial Acid] = 8.628\times 10^{- 7} + 5.495\times 10^{- 6}$ $[Initial Acid] = 6.358\times 10^{- 6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.