Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 16 - Questions and Problems - Page 772: 16.58

Answer

(a) 0.00152% (b) 0.00228% (c) 0.85%

Work Step by Step

1. Drawing the equilibrium (ICE) table we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [C_6H_5O^-] = x$ -$[C_6H_5OH] = [C_6H_5OH]_{initial} - x$ For approximation, we consider: $[C_6H_5OH] = [C_6H_5OH]_{initial}$ (a) 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][C_6H_5O^-]}{ [C_6H_5OH]}$ $Ka = 1.3 \times 10^{- 10}= \frac{x * x}{ 5.6 \times 10^{- 1}}$ $Ka = 1.3 \times 10^{- 10}= \frac{x^2}{ 5.6 \times 10^{- 1}}$ $ 7.27 \times 10^{- 11} = x^2$ $x = 8.53 \times 10^{- 6}$ 5% test: $\frac{ 8.53 \times 10^{- 6}}{ 5.6 \times 10^{- 1}} \times 100\% = 0.00152\%$ %ionization < 5% : Right approximation. (b) 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][C_6H_5O^-]}{ [C_6H_5OH]}$ $Ka = 1.3 \times 10^{- 10}= \frac{x * x}{ 2.5 \times 10^{- 1}}$ $Ka = 1.3 \times 10^{- 10}= \frac{x^2}{ 2.5 \times 10^{- 1}}$ $ 3.25 \times 10^{- 11} = x^2$ $x = 5.7 \times 10^{- 6}$ 5% test: $\frac{ 5.7 \times 10^{- 6}}{ 2.5 \times 10^{- 1}} \times 100\% = 0.00228\%$ %ionization < 5% : Right approximation. (c) 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][C_6H_5O^-]}{ [C_6H_5OH]}$ $Ka = 1.3 \times 10^{- 10}= \frac{x * x}{ 1.8 \times 10^{- 6}}$ $Ka = 1.3 \times 10^{- 10}= \frac{x^2}{ 1.8 \times 10^{- 6}}$ $ 2.33 \times 10^{- 16} = x^2$ $x = 1.52 \times 10^{- 8}$ 5% test: $\frac{ 1.52 \times 10^{- 8}}{ 1.8 \times 10^{- 6}} \times 100\% = 0.85\%$ %ionization < 5% : Right approximation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.