Answer
It's necessary $2.184 \times 10^{-3}g$ of NaOH.
Work Step by Step
1. Find the $[OH^-]$ needed in this solution:
pH + pOH = 14
10 + pOH = 14
pOH = 4
$[OH^-] = 10^{- pOH}$
$[OH^-] = 10^{- 4}M$
2. Since NaOH is a strong base:
$[NaOH] = [OH^-] = 10^{-4}M$
Therefore, we need this concentration of NaOH.
3. Find the number of moles needed:
$n(moles) = Concentration(M) * Volume(L) $
- 546 ml = 0.546L (ml to L, divide by 1000)
$n(moles) = 10^{-4} * 0.546$
$n(moles) = 5.46 \times 10^{-5}$
4. Using the molar mass, convert this number to grams.
- Molar mass ($NaOH$):
23* 1 + 16* 1 + 1* 1 = 40g/mol
$mass(g) = mm(g/mol) * n(mol)$
$mass(g) = 40 *5.46 \times 10^{-5} = 2.184 \times 10^{-3}$