Answer
The solution set is
$$\{71.6^\circ+180^\circ n, 135^\circ+180^\circ n, n\in Z\}$$
Work Step by Step
$$\sec^2\theta=2\tan\theta+4$$
1) Solve the equation over the interval $[0^\circ,360^\circ)$
$$\sec^2\theta=2\tan\theta+4$$
$$\sec^2\theta-2\tan\theta-4=0$$
- Recall the identity: $1+\tan^2\theta=\sec^2\theta$
$$1+\tan^2\theta-2\tan\theta-4=0$$
$$\tan^2\theta-2\tan\theta-3=0$$
$$(\tan^2\theta+\tan\theta)+(-3\tan\theta-3)=0$$
$$\tan\theta(\tan\theta+1)-3(\tan\theta+1)=0$$
$$(\tan\theta+1)(\tan\theta-3)=0$$
$$\tan\theta=-1\hspace{1cm}\text{or}\hspace{1cm}\tan\theta=3$$
- For $\tan\theta=-1$
Over the interval $[0^\circ, 360^\circ)$, there are 2 values of $\theta$ where $\tan\theta=-1$, which are $135^\circ$ and $315^\circ$.
So, $\theta=\{135^\circ, 315^\circ\}$
- For $\tan\theta=3$. That means, $$\theta=\tan^{-1}3$$
$$\theta\approx71.6^\circ\hspace{1cm}\text{or}\hspace{1cm}\theta\approx251.6^\circ$$
Therefore, overall, $$\theta=\{71.6^\circ,135^\circ, 251.6^\circ, 315^\circ\}$$
2) Solve the equation for all solutions
- The integer multiples of the period of the tangent function is $180^\circ$.
- We apply it to each solution found in step 1.
- We end up with a set like this
$$\{71.6^\circ+180^\circ n, 135^\circ+180^\circ n, 251.6^\circ+180^\circ n, 315^\circ+180^\circ n,nāZ\}$$
- However, as $251.6^\circ+180^\circ n$ and $71.6^\circ+180^\circ n$ refer to the same set of values, we only need to include one of them in the final solution set. The same thing can be said about $135^\circ+180^\circ n$ and $315^\circ+180^\circ n$.
So the solution set is
$$\{71.6^\circ+180^\circ n, 135^\circ+180^\circ n, n\in Z\}$$