Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.2 Trigonometric Equations I - 6.2 Exercises - Page 267: 27

Answer

$\theta = 45˚, 135˚,225˚, 315˚$

Work Step by Step

$\tan \theta - \cot \theta = 0$ $\frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta} = 0$ $\frac{(\sin \theta)^{2}- (\cos \theta)^{2}}{\cos \theta \sin \theta} = 0$ $(\sin \theta)^{2}- (\cos \theta)^{2} = 0$ $-[-(\sin \theta)^{2}+ (\cos \theta)^{2}] = 0$ $-[(\cos \theta)^{2}-(\sin \theta)^{2}] = 0$ $-cos(2\theta) = 0$ $cos(2\theta) = 0$ (Since its $2\theta$, then its for 2 cycles) $2\theta = 90˚, 270˚, (90˚ + 360˚), (270˚ + 360˚)$ $2\theta = 90˚, 270˚, 450˚, 630˚$ $\theta = \frac{90}{2}˚, \frac{270}{2}˚, \frac{450}{2}˚, \frac{630}{2}˚$ $\theta = 45˚, 135˚,225˚, 315˚$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.