Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.2 Trigonometric Equations I - 6.2 Exercises - Page 267: 55

Answer

The solution set is $$\{33.6^\circ+360^\circ n, 326.4^\circ+360^\circ n,n∈Z\}$$

Work Step by Step

$$5+5\tan^2\theta=6\sec\theta$$ 1) Solve the equation over the interval $[0^\circ,360^\circ)$ $$5+5\tan^2\theta=6\sec\theta$$ $$5(1+\tan^2\theta)=6\sec\theta$$ - Recall the identity: $1+\tan^2\theta=\sec^2\theta$ $$5\sec^2\theta=6\sec\theta$$ $$5\sec^2\theta-6\sec\theta=0$$ $$\sec\theta(5\sec\theta-6)=0$$ $$\sec\theta=0\hspace{1cm}\text{or}\hspace{1cm}\sec\theta=\frac{6}{5}$$ - For $\sec\theta=0$ The range of a sectant function is $(−\infty,−1]∪[1,\infty)$. Since $0\notin(−\infty,−1]∪[1,\infty)$, there cannot be any values of $\theta\in[0^\circ,360^\circ)$ that have $\sec\theta=0$. - For $\sec\theta=\frac{6}{5}$. That means, $$\theta=\sec^{-1}\frac{6}{5}$$ To find $\sec^{-1}\frac{6}{5}$ when even calculator does not have that function, recall that $\sec\theta=\frac{1}{\cos\theta}$. So, $\sec^{-1}x=\cos^{-1}\Big(\frac{1}{x}\Big)$ Therefore, $$\theta=\sec^{-1}\frac{6}{5}=\cos^{-1}\frac{5}{6}$$ $$\theta\approx33.6^\circ\hspace{1cm}\text{or}\hspace{1cm}\theta\approx326.4^\circ$$ Therefore, overall, $$\theta=\{33.6^\circ,326.4^\circ\}$$ 2) Solve the equation for all solutions - The integer multiples of the period of the secant function is $360^\circ$. - We apply it to each solution found in step 1, meaning the solution set would be $$\{33.6^\circ+360^\circ n, 326.4^\circ+360^\circ n,n∈Z\}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.