Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.6 Parametric Equations, Graphs, and Applications - 8.6 Exercises - Page 404: 38

Answer

$x = t-sin~t$ $y = 1-cos~t$ $0 \leq t \leq 4\pi$ We can see the graph below:

Work Step by Step

$x = t-sin~t$ $y = 1-cos~t$ $0 \leq t \leq 4\pi$ When $t = 0$: $x = (0)-sin~0 = 0$ $y = 1-cos~0 = 0$ When $t = \frac{\pi}{6}$: $x = (\frac{\pi}{6})-sin~\frac{\pi}{6} = 0.024$ $y = 1-cos~\frac{\pi}{6} = 0.134$ When $t = \frac{\pi}{4}$: $x = (\frac{\pi}{4})-~sin~\frac{\pi}{4} = 0.078$ $y = 1-cos~\frac{\pi}{4} = 0.29$ When $t = \frac{\pi}{3}$: $x = (\frac{\pi}{3})-sin~\frac{\pi}{3} = 0.18$ $y = 1-cos~\frac{\pi}{3} = 0.5$ When $t = \frac{\pi}{2}$: $x = (\frac{\pi}{2})-sin~\frac{\pi}{2} = 0.57$ $y = 1-cos~\frac{\pi}{2} = 1$ When $t = \frac{2\pi}{3}$: $x = (\frac{2\pi}{3})-sin~\frac{2\pi}{3} = 1.23$ $y = 1-cos~\frac{2\pi}{3} = 1.5$ When $t = \pi$: $x = (\pi)-sin~\pi = 3.14$ $y = 1-cos~\pi = 2$ When $t = \frac{4\pi}{3}$: $x = (\frac{4\pi}{3})-sin~\frac{4\pi}{3} = 5.06$ $y = 1-cos~\frac{4\pi}{3} = 1.5$ When $t = \frac{3\pi}{2}$: $x = (\frac{3\pi}{2})-sin~\frac{3\pi}{2} = 5.71$ $y = 1-cos~\frac{3\pi}{2} = 1$ When $t = 2\pi$: $x = (2\pi)-sin~2\pi = 6.28$ $y = 1-cos~2\pi = 0$ When $t = 3\pi$: $x = (3\pi)-sin~3\pi = 9.42$ $y = 1-cos~3\pi = 2$ When $t = 4\pi$: $x = (4\pi)-sin~4\pi = 12.57$ $y = 1-cos~4\pi = 0$ We can see the graph below:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.