Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.6 Parametric Equations, Graphs, and Applications - 8.6 Exercises - Page 404: 29

Answer

(a) $x = 3~cos~t$ $y = 3~sin~t$ We can see the graph below. (b) $x^2+y^2 = 9$

Work Step by Step

(a) $x = 3~cos~t$ $y = 3~sin~t$ When $t = 0$: $x = 3~cos~0 = 3$ $y = 3~sin~0 = 0$ When $t = \frac{\pi}{6}$: $x = 3~cos~\frac{\pi}{6} = \frac{3\sqrt{3}}{2}$ $y = 3~sin~\frac{\pi}{6} = \frac{3}{2}$ When $t = \frac{\pi}{4}$: $x = 3~cos~\frac{\pi}{4} = \frac{3\sqrt{2}}{2}$ $y = 3~sin~\frac{\pi}{4} = \frac{3\sqrt{2}}{2}$ When $t = \frac{\pi}{3}$: $x = 3~cos~\frac{\pi}{3} = \frac{3}{2}$ $y = 3~sin~\frac{\pi}{3} = \frac{3\sqrt{3}}{2}$ When $t = \frac{\pi}{2}$: $x = 3~cos~\frac{\pi}{2} = 0$ $y = 3~sin~\frac{\pi}{2} = 3$ When $t = \frac{2\pi}{3}$: $x = 3~cos~\frac{2\pi}{3} = -\frac{3}{2}$ $y = 3~sin~\frac{2\pi}{3} = \frac{3\sqrt{3}}{2}$ When $t = \pi$: $x = 3~cos~\pi = -3$ $y = 3~sin~\pi = 0$ When $t = \frac{4\pi}{3}$: $x = 3~cos~\frac{4\pi}{3} = -\frac{3}{2}$ $y = 3~sin~\frac{4\pi}{3} = -\frac{3\sqrt{3}}{2}$ When $t = \frac{3\pi}{2}$: $x = 3~cos~\frac{3\pi}{2} = 0$ $y = 3~sin~\frac{3\pi}{2} = -3$ We can see the graph below. (b) $x = 3~cos~t$ $y = 3~sin~t$ $x^2+y^2 = (3~cos~t)^2+(3~sin~t)^2$ $x^2+y^2 = 9~cos^2~t+9~sin^2~t$ $x^2+y^2 = 9~(cos^2~t+~sin^2~t)$ $x^2+y^2 = 9~(1)$ $x^2+y^2 = 9$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.