Answer
$y = t^2-2t+3$
$x=t$
where $-\infty \lt t \lt \infty$
$y = t^2+2$
$x = t+1$
where $-\infty \lt t \lt \infty$
Work Step by Step
$y = x^2-2x+3$
We can make one parametric representation as follows:
$y = t^2-2t+3$
$x=t$
where $-\infty \lt t \lt \infty$
We can make another parametric representation as follows:
$y = x^2-2x+3$
$y = (x-1)^2+2$
Let $~~y = t^2+2$
$t=x-1$
$x = t+1$
where $-\infty \lt t \lt \infty$