Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.6 Parametric Equations, Graphs, and Applications - 8.6 Exercises - Page 404: 25

Answer

(a) $x = t+2$ $y = \frac{1}{t+2}$ (Note that $t \neq -2$) We can see the graph below. (b) $y = \frac{1}{x}$ $x\neq 0$

Work Step by Step

(a) $x = t+2$ $y = \frac{1}{t+2}$ $t \neq -2$ t = -4: $x = (-4)+2 = -2$ $y = \frac{1}{(-4)+2} = -\frac{1}{2}$ t = -3: $x = (-3)+2 = -1$ $y = \frac{1}{(-3)+2} = -1$ t = -\frac{5}{2}: $x = (-\frac{5}{2})+2 = -\frac{1}{2}$ $y = \frac{1}{(-\frac{5}{2})+2} = -2$ t = -\frac{3}{2}: $x = (-\frac{3}{2})+2 = \frac{1}{2}$ $y = \frac{1}{(-\frac{3}{2})+2} = 2$ t = -1: $x = (-1)+2 = 1$ $y = \frac{1}{(-1)+2} = 1$ t = 0: $x = (0)+2 = 2$ $y = \frac{1}{(0)+2} = \frac{1}{2}$ t = 1: $x = (1)+2 = 3$ $y = \frac{1}{(1)+2} = \frac{1}{3}$ t = 2: $x = (2)+2 = 4$ $y = \frac{1}{(2)+2} = \frac{1}{4}$ We can see the graph below. (b) $x = t+2$ $y = \frac{1}{t+2}$ Therefore: $~~y = \frac{1}{x}$ Since $t \neq -2$, then $x\neq 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.