Answer
$y = t^2-4t+6$
$x=t$
where $-\infty \lt t \lt \infty$
$y = t^2+2$
$x = t+2$
where $-\infty \lt t \lt \infty$
Work Step by Step
$y = x^2-4x+6$
We can make one parametric representation as follows:
$y = t^2-4t+6$
$x=t$
where $-\infty \lt t \lt \infty$
We can make another parametric representation as follows:
$y = x^2-4x+6$
$y = (x-2)^2+2$
Let $~~y = t^2+2$
$t=x-2$
$x = t+2$
where $-\infty \lt t \lt \infty$