Answer
$\mu=182$
Work Step by Step
$p(z\gt z_0)=.9$
$p(z\lt -z_0)=.9$
$p(0\lt z\lt -z_0)=p(z\lt-z_0)-p(z\lt 0)=.9-.5=.4$
If $p(0\lt z\lt -z_0)=.4$ then $-z_0=1.28$
$z_0=-1.28$
$z_0=\frac{x-\mu}{\sigma}$
$-1.28=\frac{150-\mu}{25}$
$150-\mu=-1.28(25)$
$150+32=\mu$
$\mu=182$