Answer
$9i+7j+3k$
Work Step by Step
Let us consider two vectors $v=xi+yj+zk$ and $w=pi+qj+rk$. Then cross product of the two vectors $v$ and $w$ can be computed in the form of determinant as:
$ v \times w=\begin{vmatrix}
i & j & k \\
x & y & z \\
p & q & r \\ \end{vmatrix}$
We have:
$det =v \times u =[(3)(1)-(2)(-3)] i -j [(-3)(1) - (2)(2)]+k [(-3)(-3) -(3) (2)]=9i+7j+3k$