Answer
$v \times w =5i +5j +5k$
$w \times v=-5i-5j-5k$
and $ v \times v = w \times w =0$
Work Step by Step
Let us consider two vectors $v=xi+yj+zk$ and $w=pi+qj+rk$. Then cross product of the two vectors $v$ and $w$ can be computed in the form of the determinant as:
$ v \times w=\begin{vmatrix}
i & j & k \\
x & y & z \\
p & q & r \\ \end{vmatrix}$
We have:
$det =v \times w =[(-3)(-1)-(-2)(1)] i -j [(2)(-1) - (1)(3)]+k [(2)(-2) -(-3) (3)]=5i +5j +5k$
Recall that $v \times w= -w \times v=-5i-5j-5k$
and $ v \times v = w \times w =0$