Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 6 - Analytic Trigonometry - Section 6.7 Product-to-Sum and Sum-to-Product Formulas - 6.7 Assess Your Understanding - Page 524: 43

Answer

$0,\frac{\pi}{3},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{4\pi}{3},\frac{3\pi}{2},\frac{5\pi}{3}$

Work Step by Step

1. Use the Sum-to-Product Formula, we have: $sin(2\theta)+sin(4\theta)=0\Longrightarrow 2sin(\frac{2\theta+4\theta}{2})cos(\frac{2\theta-4\theta}{2})=0\Longrightarrow sin(3\theta)cos(\theta)=0$ 2. For $cos(\theta)=0$, we have $\theta=k\pi+\frac{\pi}{2}$ 3. For $sin(3\theta)=0$, we have $3\theta=k\pi$, thus $\theta=\frac{k\pi}{3}$ 4. Within $[0,2\pi)$, we have $\theta=0,\frac{\pi}{3},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{4\pi}{3},\frac{3\pi}{2},\frac{5\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.