Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 6 - Analytic Trigonometry - Section 6.7 Product-to-Sum and Sum-to-Product Formulas - 6.7 Assess Your Understanding - Page 524: 24

Answer

$- 2 \sin (\dfrac{ \theta}{2}) \cos \theta $

Work Step by Step

Recall the Sum to Product Identities: $a) \sin x +\sin y =2 \sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2} \\ b) \sin x - \sin y =2 \sin \dfrac{x -y}{2} \cos \dfrac{x +y}{2} \\ c) \cos x +\cos y =2 \cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2} \\ d) \cos x - \cos y = -2 \sin \dfrac{x+y}{2} \sin \dfrac{x-y}{2}$ We know that $\sin$, $\csc$, and $\tan$ are odd trigonometric functions. This implies that $f (-x)=f(x) \implies \sin(-x)=- \sin(x)$ By identity $(b)$, we have: $\sin (\dfrac{ \theta}{2}) - \sin (\dfrac{3\theta}{2}) = 2 \sin \dfrac{\dfrac{ \theta}{2} - \dfrac{3 \theta}{2} }{2} \ \cos \dfrac{ \dfrac{ \theta}{2} + \dfrac{3 \theta}{2} }{2} \\= 2 \sin (\dfrac{-\theta}{2} ) \cos \theta \\=- 2 \sin (\dfrac{ \theta}{2}) \cos \theta $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.