Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 6 - Analytic Trigonometry - Section 6.7 Product-to-Sum and Sum-to-Product Formulas - 6.7 Assess Your Understanding - Page 524: 30

Answer

$\tan \ 2 \ \theta$

Work Step by Step

Recall the Sum to Product Identities: $a) \sin x +\sin y =2 \sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2} \\ b) \sin x - \sin y =2 \sin \dfrac{x -y}{2} \cos \dfrac{x +y}{2} \\ c) \cos x +\cos y =2 \cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2} \\ d) \cos x - \cos y = -2 \sin \dfrac{x+y}{2} \sin \dfrac{x-y}{2}$ By identities $(a)$ and (d), we have: $\dfrac{\cos \theta - \cos 5 \theta}{\sin \theta + \sin 5 \theta }=\dfrac{- 2 \sin \dfrac{ \theta + 5 \theta}{2} \ \sin \dfrac{ \theta - 5 \theta }{2} }{2 \sin \dfrac{ \theta + 5 \theta}{2} \ \cos \dfrac{ \theta - 5 \theta }{2} }\\=\dfrac{2 \sin 3 \theta \ \sin 2\theta }{2 \sin 3 \theta \ \cos 2 \theta } \\=\tan \ 2 \ \theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.