Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 5 - Trigonometric Functions - Chapter Test - Page 460: 27

Answer

$y=-3 \ \sin (3x+\dfrac{3 \pi}{4})$

Work Step by Step

The general form for the sinusoidal function can be expressed as: $y=A\sin{(\omega x-\phi)}+B ..(1)$ where $A$ is the amplitude and $B$ represents the vertical shift. The $\omega$ can be found from the period by the formula as: $\omega=\dfrac{2\pi}{T}$ and the phase shift is $\dfrac{\phi}{\omega}$. This means that $\phi=\omega \times \ Phase \ Shift$ We have: $A=-3$, $B=0$, $\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{ 2\pi/3}=3$ $\phi=\omega \times \ Phase \ Shift=(3)(-\dfrac{\pi}{4})=-\dfrac{3 \pi}{4}$ Therefore, our sinusoidal function (1) becomes: $y=-3 \ \sin (3x+\dfrac{3 \pi}{4})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.