Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Chapter Review - Review Exercises - Page 370: 32

Answer

(a) $(-\infty,\infty)$. (b) see graph. (c) $(1,\infty)$, $y=1$. (d) $ f^{-1}(x)=-log_3(x-1)$. (e) $(1,\infty)$ and $(-\infty,\infty)$. (f) see graph.

Work Step by Step

Given $f(x)=1+3^{-x}$, we have: (a) the domain of $f(x)$: $(-\infty,\infty)$. (b) see graph. (c) From the graph, we can determine the range of $f(x)$: $(1,\infty)$, asymptote(s) of $f(x)$: $y=1$. (d) $f(x)=1+3^{-x} \Longrightarrow y=1+3^{-x} \Longrightarrow x=1+3^{-y} \Longrightarrow y=-log_3(x-1) \Longrightarrow f^{-1}(x)=-log_3(x-1)$. (e) we can find the domain and the range of $f^{-1}(x)$: $(1,\infty)$ and $(-\infty,\infty)$. (f) see graph.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.