Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Chapter Review - Review Exercises - Page 370: 10

Answer

$ f^{-1}(x)=\frac{2x+3}{5x-2} $ $f(x)$: $\{x|x\ne\frac{2}{5} \}$ and $\{y|y\ne\frac{2}{5} \}$. $f^{-1}(x)$: $\{x|x\ne\frac{2}{5} \}$ and $\{y|y\ne\frac{2}{5} \}$.

Work Step by Step

1. $f(x)=\frac{2x+3}{5x-2} \Longrightarrow y=\frac{2x+3}{5x-2} \Longrightarrow x=\frac{2y+3}{5y-2} \Longrightarrow y=\frac{2x+3}{5x-2} \Longrightarrow f^{-1}(x)=\frac{2x+3}{5x-2} $ 2. check $f(f^{-1}(x))=\frac{2(\frac{2x+3}{5x-2})+3}{5(\frac{2x+3}{5x-2})-2}=x$. $f^{-1}(f(x))=\frac{2(\frac{2x+3}{5x-2})+3}{5(\frac{2x+3}{5x-2})-2}=x$. 3. The domain and the range of $f(x)$: $\{x|x\ne\frac{2}{5} \}$ and $\{y|y\ne\frac{2}{5} \}$. The domain and the range of $f^{-1}(x)$: $\{x|x\ne\frac{2}{5} \}$ and $\{y|y\ne\frac{2}{5} \}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.