Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Chapter Review - Review Exercises - Page 370: 22

Answer

$\log_3{u}+2\log_3{v}-\log_3{w}$

Work Step by Step

We wish to find $\log_3{u}+\log_3{v^2}-\log_3{w}$. In order to solve this problem, we will use the following logarithmic properties: (a) $\sqrt[m]{a}=a^{\frac{1}{m}}$ (b) $\log_a {x^n}=n\cdot \log_a {x}$ (c) $\log_a{xy}=\log_a{x} +\log_a{y}$ (d) $\log_a{\dfrac{x}{y}}=\log_a{x} -\log_a{y}$ ($\log_a{M}=\log_a{N} \longrightarrow M=N$.) Use property: $\log_a{\dfrac{x}{y}}=\log_a{x} -\log_a{y}$ Thus, $\log_3{\frac{uv^2}{w}}=\log_3{uv^2}-\log_3{w}.$ Use property: $\log_a{\dfrac{x}{y}}=\log_a{x} -\log_a{y}$ So, $\log_3{uv^2}-\log_3{w}=\log_3{u}+\log_3{v^2}-\log_3{w}$ $\log_a {x^n}=n\cdot \log_a {x}$ So, $\log_3{u}+\log_3{v^2}-\log_3{w}=\log_3{u}+2\log_3{v}-\log_3{w}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.