Answer
$d=-2$.
$a_1= 25$,
$a_n= a_{n-1}-2$.
$a_n= 27-2n$
Work Step by Step
1. Based on the given conditions, we have $a_{14}=a_1+13d=-1$ and $a_{18}=a_1+17d=-9$, thus $4d=-8$ and $d=-2$.
2. We can find the first term $a_1=-1-13(-2)=25$, and a recursive formula $a_n=a_{n-1}+d=a_{n-1}-2$.
3. We can find a formula for the nth term $a_n=a_1+(n-1)d=25+(n-1)(-2)=27-2n$