Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Appendix A - Review - A.3 Polynomials - A.3 Assess Your Understanding - Page A31: 104

Answer

quotient $=x^4+ax^3+a^2x^2+a^3x+a^4$, remainder$=0$

Work Step by Step

1. Use the factor rule $\:x^n+y^n=\left(x+y\right)\left(x^{n-1}-x^{n-2}y+\dots -xy^{n-2}+y^{n-1}\right)$, we have $x^5-a^5=(x-a)(x^4+ax^3+a^2x^2+a^3x+a^4)$, thus for $x^5-a^5$ divided by $x-a$, we get: quotient $=x^4+ax^3+a^2x^2+a^3x+a^4$, remainder$=0$ 2. To verify, we have $(x^4+ax^3+a^2x^2+a^3x+a^4)(x-a)+(0)=x^5-a^5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.