Answer
$\dfrac{(x-2)^2}{4}-\dfrac{(y+3)^2}{9}=1$
Work Step by Step
Center: $(2,-3) \implies h=2,k=-3$ and Vertices: $2$
This yields: $ a=2$ and $ b=3$
Standard Equation for a hyperbola when the hyperbola opens to the left is: $\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1$
We have $ a^2=4; b^2 =9$
So, the equation for hyperbola is :
$\dfrac{(x-2)^2}{4}-\dfrac{(y+3)^2}{9}=1$