Answer
a)
The system represented by A is $4w-2x+2y-3z=0$, $7w-x-y-3z=0$, and $ w+x+y-z=0$.
b) The system’s solution set is $\left( 0.5z,0,0.5z,z \right)$.
Work Step by Step
(a)
Consider the augmented matrix:
$\left[ \begin{matrix}
4 & -2 & 2 & -3 & 0 \\
7 & -1 & -1 & -3 & 0 \\
1 & 1 & 1 & -1 & 0 \\
\end{matrix} \right]$.
Use back-substitution to express $ w,x,y,z $.
$\begin{align}
& 4w-2x+2y-3z=0 \\
& 7w-x-y-3z=0 \\
& w+x+y-z=0
\end{align}$
Therefore, the system represented by A is $4w-2x+2y-3z=0$, $7w-x-y-3z=0$, and $ w+x+y-z=0$.
(b)
Consider the following augmented matrix:
$\left[ \begin{matrix}
4 & -2 & 2 & -3 & 0 \\
7 & -1 & -1 & -3 & 0 \\
1 & 1 & 1 & -1 & 0 \\
\end{matrix} \right]$.
Now, use row-echelon method by applying row operation,
Interchange ${{R}_{1}}\leftrightarrow {{R}_{3}}$
$\left[ \begin{matrix}
1 & 1 & 1 & -1 & 0 \\
7 & -1 & -1 & -3 & 0 \\
4 & -2 & 2 & -3 & 0 \\
\end{matrix} \right]$
Apply ${{R}_{2}}\to {{R}_{2}}-7{{R}_{1}}$, ${{R}_{3}}\to {{R}_{3}}-4{{R}_{1}}$,
$\left[ \begin{matrix}
1 & 1 & 1 & -1 & 0 \\
0 & -8 & -8 & 4 & 0 \\
0 & -6 & -2 & 1 & 0 \\
\end{matrix} \right]$
Apply ${{R}_{2}}\to -\frac{1}{4}{{R}_{2}}$,
$\left[ \begin{matrix}
1 & 1 & 1 & -1 & 0 \\
0 & 2 & 2 & -1 & 0 \\
0 & -6 & -2 & 1 & 0 \\
\end{matrix} \right]$
Apply ${{R}_{3}}\to {{R}_{3}}+3{{R}_{2}}$,
$\left[ \begin{matrix}
1 & 1 & 1 & -1 & 0 \\
0 & 2 & 2 & -1 & 0 \\
0 & 0 & 4 & -2 & 0 \\
\end{matrix} \right]$
Apply ${{R}_{2}}\to \frac{1}{2}{{R}_{2}}$, ${{R}_{3}}\to \frac{1}{4}{{R}_{3}}$,
$\left[ \begin{matrix}
1 & 1 & 1 & -1 & 0 \\
0 & 1 & 1 & -0.5 & 0 \\
0 & 0 & 1 & -0.5 & 0 \\
\end{matrix} \right]$
Apply ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$,
$\left[ \begin{matrix}
1 & 0 & 0 & -0.5 & 0 \\
0 & 1 & 1 & -0.5 & 0 \\
0 & 0 & 1 & -0.5 & 0 \\
\end{matrix} \right]$
Apply ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$,
$\left[ \begin{matrix}
1 & 0 & 0 & -0.5 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -0.5 & 0 \\
\end{matrix} \right]$
Now, use back-substitution to express $ w,x,y,z $:
$\begin{align}
& w-0.5z=0 \\
& x=0 \\
& y-0.5z=0
\end{align}$
Now, in the above linear system,
From the third equation we get,
$\begin{align}
& y-0.5z=0 \\
& y=0.5z
\end{align}$
From second equation we get,
$ x=0$
From first equation we get,
$\begin{align}
& w-0.5z=0 \\
& w=0.5z
\end{align}$
In the provided matrix, there are four variables and three equations, so substitute the value of $ z=t $.
Therefore, the system’s solution set is $\left( 0.5z,0,0.5z,z \right)$