Answer
$\left\{ \left( 1,\ -1-z,\ 2,\ z \right) \right\}$
Work Step by Step
Now we need to convert the given system of equations into matrix form.
$\left[ \left. \begin{align}
& \begin{matrix}
1 & 1 & -1 & 1 \\
\end{matrix} \\
& \begin{matrix}
2 & -1 & 2 & -1 \\
\end{matrix} \\
& \begin{matrix}
-1 & 2 & 1 & 2 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
-2 \\
7 \\
-1 \\
\end{matrix} \right]$
Now we will solve this matrix as below.
$\left[ \left. \begin{align}
& \begin{matrix}
1 & 1 & -1 & \ \ 1 \\
\end{matrix} \\
& \begin{matrix}
2 & -1 & 2 & -1 \\
\end{matrix} \\
& \begin{matrix}
0 & 3 & \ \ 0 & \ \ 3 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
-2 \\
7 \\
-3 \\
\end{matrix} \right]$ $ By,\ {{R}_{1}}+{{R}_{3}}\to {{R}_{3}}$
$\left[ \left. \begin{align}
& \begin{matrix}
1 & 1 & -1 & \ \ 1 \\
\end{matrix} \\
& \begin{matrix}
0 & -3 & 4 & -3 \\
\end{matrix} \\
& \begin{matrix}
0 & 3 & \ \ 0 & \ \ 3 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
-2 \\
11 \\
-3 \\
\end{matrix} \right]$ $ By,\ {{R}_{2}}-2{{R}_{1}}\to {{R}_{2}}$
$\left[ \left. \begin{align}
& \begin{matrix}
1 & 1 & -1 & \ \ 1 \\
\end{matrix} \\
& \begin{matrix}
0 & -3 & 4 & -3 \\
\end{matrix} \\
& \begin{matrix}
0 & 0 & \ \ 4 & \ \ 0 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
-2 \\
11 \\
8 \\
\end{matrix} \right]$ $ By,\ {{R}_{2}}+{{R}_{3}}\to {{R}_{3}}$
Now, we convert this matrix system into linear equations as below.
$\begin{align}
w+x-y+z=-2 & \\
-3x+4y-3z=11 & \\
4y=8 & \\
\end{align}$
Now writing the values of $ w,x $ and $ y $ in terms of $ z $ and solving the equation we get,
$\begin{align}
& w=1 \\
& x=-1-z \\
& y=2 \\
& z=z \\
\end{align}$
Hence, the solution is:
$\left\{ \left( 1,\ -1-z,\ 2,\ z \right) \right\}$