Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Exercise Set - Page 903: 19

Answer

The complete solution is $\left\{ 2z-\frac{5}{4},\ \ \frac{13}{4},\ z \right\}$.

Work Step by Step

We start with: $\begin{align} & x+y-2z=2 \\ & 3x-y-6z=-7 \end{align}$ Now converting it into an augmented matrix, we get, $\left[ \left. \begin{matrix} \begin{matrix} 1 & 1 & -2 \\ \end{matrix} \\ \begin{matrix} 3 & -1 & -6 \\ \end{matrix} \\ \end{matrix} \right|\begin{matrix} 2 \\ -7 \\ \end{matrix} \right]$ $\left[ \left. \begin{matrix} \begin{matrix} 1 & 1 & -2 \\ \end{matrix} \\ \begin{matrix} 0 & -4 & 0 \\ \end{matrix} \\ \end{matrix} \right|\begin{matrix} 2 \\ -13 \\ \end{matrix} \right]$ ${{R}_{2}}-3{{R}_{1}}\to {{R}_{2}}$ Now we will express this matrix into equations as below:. $\begin{align} & x+y-2z=5 \\ & -4y=-13 \end{align}$ Further we will solve the equations for values of $ x,y $ and $ z $. $\begin{align} & x=2z-\frac{5}{4} \\ & y=\frac{13}{4} \\ & z=z \end{align}$ Hence, the complete solution is $\left\{ 2z-\frac{5}{4},\ \ \frac{13}{4},\ z \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.