Answer
$\left\{ \left( 3+z,\ 5+5z,\ 3z+4,\ z \right) \right\}$
Work Step by Step
Convert the provided system of equations into matrix form.
$\left[ \left. \begin{align}
& \begin{matrix}
2 & -3 & 4 & 1 \\
\end{matrix} \\
& \begin{matrix}
1 & -1 & 3 & -5 \\
\end{matrix} \\
& \begin{matrix}
3 & 1 & -2 & -2 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
7 \\
10 \\
6 \\
\end{matrix} \right]$
Solve the above matrix as below:
$\text{By},\ {{R}_{3}}-3{{R}_{2}}\to {{R}_{3}}$
$\left[ \left. \begin{align}
& \begin{matrix}
2 & -3 & \ \ 4 & \ 1 \\
\end{matrix} \\
& \begin{matrix}
1 & -1 & \ \ 3 & -5 \\
\end{matrix} \\
& \begin{matrix}
0 & \ 4 & -11 & 13 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
7 \\
10 \\
-24 \\
\end{matrix} \right]$
$\text{By},\ 2{{R}_{2}}-{{R}_{1}}\to {{R}_{2}}$
$\left[ \left. \begin{align}
& \begin{matrix}
2 & -3 & \ \ 4 & \ \ \ 1 \\
\end{matrix} \\
& \begin{matrix}
0 & \ \ 1 & \ \ \ 2 & -11 \\
\end{matrix} \\
& \begin{matrix}
0 & \ \ 4 & -11 & \ 13 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
7 \\
13 \\
-24 \\
\end{matrix} \right]$
$ By,\ {{R}_{3}}-4{{R}_{2}}\to {{R}_{3}}$
$\left[ \left. \begin{align}
& \begin{matrix}
2 & -3 & \ \ 4 & \ \ \ 1 \\
\end{matrix} \\
& \begin{matrix}
0 & \ \ 1 & \ \ \ 2 & -11 \\
\end{matrix} \\
& \begin{matrix}
0 & \ \ 4 & -11 & \ 13 \\
\end{matrix} \\
\end{align} \right|\begin{matrix}
7 \\
13 \\
-24 \\
\end{matrix} \right]$
Convert the above matrix system into the linear equations as below:
$\begin{align}
& 2w-3x+4y+z=7 \\
& x+2y-11z=13 \\
& -19y+57z=-76
\end{align}$
Calculate the value of y in terms of z as below:
$\begin{align}
& -19y+57z=-76 \\
& 19y=76+57z \\
& y=\frac{76}{19}+\frac{57}{19}z \\
& y=4+3z
\end{align}$
Calculate the value of x in terms of z, by substituting the value ofy, z as below:
$\begin{align}
& x+2\left( 4+3z \right)-11z=13 \\
& x+8+6z-11z=13 \\
& x=13-8+5z \\
& x=5+5z
\end{align}$
Calculate the value of w in terms of z, by substituting the value of x, y, z as below:
$\begin{align}
& 2w-3\left( 5+5z \right)+4\left( 4+3z \right)+z=7 \\
& 2w-15-15z+16+12z+z=7 \\
& w=\frac{6}{2}+\frac{2}{2}z \\
& w=3+z
\end{align}$
The value of w, x and y in terms of z:
$\begin{align}
& w=3+z \\
& x=5+5z \\
& y=3z+4 \\
& z=z \\
\end{align}$
Hence we have the solutions:
$\left\{ \left( 3+z,\ 5+5z,\ 3z+4,\ z \right) \right\}$