Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Exercise Set - Page 903: 16

Answer

The complete solution is $\left\{ 2,\ \frac{z}{2}-1,\ z \right\}$.

Work Step by Step

We follow the following steps. $\begin{align} & 3x+2y-z=5 \\ & x+2y-z=1 \end{align}$ Now converting it into an augmented matrix, we get, $\left[ \left. \begin{align} & \begin{matrix} 3 & 2 & -1 \\ \end{matrix} \\ & \begin{matrix} 1 & 2 & -1 \\ \end{matrix} \\ \end{align} \right|\begin{matrix} 5 \\ 1 \\ \end{matrix} \right]$ $\left[ \left. \begin{align} & \begin{matrix} 3 & 2 & -1 \\ \end{matrix} \\ & \begin{matrix} 0 & 4 & -2 \\ \end{matrix} \\ \end{align} \right|\begin{matrix} 5 \\ -2 \\ \end{matrix} \right]$ $3{{R}_{2}}-{{R}_{1}}\to {{R}_{2}}$ Now we will express this matrix into equations as below:. $\begin{align} & 3x+2y-z=5 \\ & 4y-2z=-2 \end{align}$ Further we will solve the equations for values of $ x,y $ and $ z $. $\begin{align} & x=2 \\ & y=\frac{z}{2}-1 \\ & z=z \end{align}$ Hence, the solution is: $\left\{ 2,\ \frac{z}{2}-1,\ z \right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.