Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Exercise Set - Page 902: 1

Answer

The system of equations has no solution

Work Step by Step

The provided system of equations is: $\begin{align} 5x+12y+z=10 & \\ 2x+5y+2z=-1 & \\ x+2y-3z=5 & \\ \end{align}$ The given system of equations can be written in matrix form as below: $\left[ \left. \begin{matrix} 5 & 12 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & -3 \\ \end{matrix} \right|\begin{matrix} 10 \\ -1 \\ 5 \\ \end{matrix} \right]$ Now solve this matrix. $\left[ \left. \begin{matrix} 5 & 12 & 1 \\ 0 & 1 & 8 \\ 1 & 2 & -3 \\ \end{matrix} \right|\begin{matrix} 10 \\ -11 \\ 5 \\ \end{matrix} \right]$ $ By,\ {{R}_{2}}-2{{R}_{3}}\to {{R}_{2}}$ $\left[ \left. \begin{matrix} 5 & 12 & 1 \\ 0 & 1 & 8 \\ 0 & 2 & 16 \\ \end{matrix} \right|\begin{matrix} 10 \\ -11 \\ -15 \\ \end{matrix} \right]$ $ By,\ {{R}_{1}}-5{{R}_{3}}\to {{R}_{3}}$ $\left[ \left. \begin{matrix} 5 & 12 & 1 \\ 0 & 1 & 8 \\ 0 & 0 & 0 \\ \end{matrix} \right|\begin{matrix} 10 \\ -11 \\ -7 \\ \end{matrix} \right]$ $ By,\ 2{{R}_{2}}-{{R}_{3}}\to {{R}_{3}}$ Convert the last row in equation form: $\begin{align} 0x+0y+0z=-7 & \\ 0=-7 & \\ \end{align}$ Which is not possible.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.