Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Exercise Set - Page 902: 2

Answer

No solution.

Work Step by Step

The given system of equations can be written in matrix form as below: $\left[ \left. \begin{matrix} 2 & -4 & 1 \\ 1 & -3 & 1 \\ 3 & -7 & 2 \\ \end{matrix} \right|\begin{matrix} 3 \\ 5 \\ 12 \\ \end{matrix} \right]$ Solve this matrix as below to get: $\left[ \left. \begin{matrix} 2 & -4 & 1 \\ 1 & -3 & 1 \\ 0 & -2 & 1 \\ \end{matrix} \right|\begin{matrix} 3 \\ 5 \\ 3 \\ \end{matrix} \right]$ $ By,\ 3{{R}_{2}}-{{R}_{3}}\to {{R}_{3}}$ $\left[ \left. \begin{matrix} 2 & -4 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\ \end{matrix} \right|\begin{matrix} 3 \\ 7 \\ 3 \\ \end{matrix} \right]$ $ By,\ 2{{R}_{2}}-{{R}_{1}}\to {{R}_{2}}$ $\left[ \left. \begin{matrix} 2 & -4 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \\ \end{matrix} \right|\begin{matrix} 3 \\ 7 \\ 4 \\ \end{matrix} \right]$ $ By,\ {{R}_{2}}-{{R}_{3}}\to {{R}_{3}}$ Convert the last row in equation form, $\begin{align} 0x+0y+0z=4 & \\ 0=4 & \\ \end{align}$ And this statement is not true, so there is no solution of this system. Hence, there is no solution for this system of equations.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.