Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Concept and Vocabulary Check - Page 902: 5

Answer

Using Gaussian elimination to solve $\left\{ \begin{align} 3x+2y+-2z=0 & \\ x-y+z=5 & \\ \end{align} \right.$ We obtain the matrix $\left[ \left. \begin{align} & \begin{matrix} 1 & -1 & 1 \\ \end{matrix} \\ & \begin{matrix} 0 & 1 & -1 \\ \end{matrix} \\ \end{align} \right|\begin{matrix} 5 \\ -3 \\ \end{matrix} \right]$ Translating this matrix back into equation form gives $\left\{ \begin{matrix} \underline{x-y+z=5} & \text{Equation}\ 1 \\ \underline{y-z=-3} & \text{Equation}\ 2 \\ \end{matrix} \right.$ Solving Equation 2 for $ y $ in terms of $ z $ results in $ y=z-3$. Substituting this expression for $ y $ in Equation 1 gives $ x=2$. The system’s solution set is $\left\{ 2,\ z-3,\ z \right\}$.

Work Step by Step

Convert the given linear equation into matrix form, $\left[ \left. \begin{align} & \begin{matrix} 1 & -1 & 1 \\ \end{matrix} \\ & \begin{matrix} 0 & 1 & -1 \\ \end{matrix} \\ \end{align} \right|\begin{matrix} 5 \\ -3 \\ \end{matrix} \right]$ Write it back in the linear equation, $\begin{align} x-y+z=5 & \\ y-z=-3 & \\ \end{align}$ Write these equations for x and y in terms of z $ y=z-3$ and $ x=2$ Hence the solution set is $\left\{ \left( 2,\ z-3,\ z \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.