Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Exercise Set - Page 902: 11

Answer

The system solution set is $\left( 1,3,2,1 \right)$.

Work Step by Step

Consider the given system of the equation: $\left\{ \begin{align} & 2w+x-y=3 \\ & w-3x+2y=-4 \\ & 3w+x-3y+z=1 \\ & w+2x-4y-z=-2 \end{align} \right.$ The matrix corresponding to the system of equations is as follows: $\left[ \begin{matrix} 2 & 1 & -1 & 0 & 3 \\ 1 & -3 & 2 & 0 & -4 \\ 3 & 1 & -3 & 1 & 1 \\ 1 & 2 & -4 & -1 & -2 \\ \end{matrix} \right]$ Using the elementary row transformation we will find the echelon form of the matrix. Interchange ${{R}_{1}}\leftrightarrow {{R}_{2}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 2 & 1 & -1 & 0 & 3 \\ 3 & 1 & -3 & 1 & 1 \\ 1 & 2 & -4 & -1 & -2 \\ \end{matrix} \right]$ Apply ${{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}$, ${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 0 & 7 & -5 & 0 & 11 \\ 0 & 10 & -9 & 1 & 13 \\ 1 & 2 & -4 & -1 & -2 \\ \end{matrix} \right]$ Apply ${{R}_{4}}\to {{R}_{4}}-{{R}_{1}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 0 & 7 & -5 & 0 & 11 \\ 0 & 10 & -9 & 1 & 13 \\ 0 & 5 & -6 & -1 & 2 \\ \end{matrix} \right]$ Apply ${{R}_{3}}\to {{R}_{3}}-2{{R}_{4}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 0 & 7 & -5 & 0 & 11 \\ 0 & 0 & 3 & 3 & 9 \\ 0 & 5 & -6 & -1 & 2 \\ \end{matrix} \right]$ Interchange ${{R}_{3}}\leftrightarrow {{R}_{4}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 0 & 7 & -5 & 0 & 11 \\ 0 & 5 & -6 & -1 & 2 \\ 0 & 0 & 3 & 3 & 9 \\ \end{matrix} \right]$ Apply ${{R}_{3}}\to {{R}_{3}}-\frac{5}{7}{{R}_{2}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 0 & 7 & -5 & 0 & 11 \\ 0 & 0 & -\frac{17}{7} & -1 & -\frac{41}{7} \\ 0 & 0 & 3 & 3 & 9 \\ \end{matrix} \right]$ Apply ${{R}_{4}}\to {{R}_{4}}+\frac{21}{17}{{R}_{3}}$ $\left[ \begin{matrix} 1 & -3 & 2 & 0 & -4 \\ 0 & 7 & -5 & 0 & 11 \\ 0 & 0 & -\frac{17}{7} & -1 & -\frac{41}{7} \\ 0 & 0 & 0 & \frac{30}{17} & \frac{30}{17} \\ \end{matrix} \right]$ Now use back-substitution to express $ w,x,y,z $. $\begin{align} & w-3x+2y=-4 \\ & 7x-5y=11 \\ & -\frac{17}{7}y-z=-\frac{41}{7} \\ & z=1 \end{align}$ Substitute $ z=1$ in the third equation to get: $\begin{align} & -\frac{17}{7}y-1=-\frac{41}{7} \\ & -\frac{17}{7}y=-\frac{41}{7}+1 \\ & -\frac{17}{7}y=-\frac{34}{7} \\ & y=2 \end{align}$ Substitute $ y=2$ in the second equation to get: $\begin{align} & 7x-5\left( 2 \right)=11 \\ & 7x=11+10 \\ & x=3 \end{align}$ Substitute $ x=3$ and $ y=2$ in the first equation to get: $\begin{align} & w-3\left( 3 \right)+2\left( 2 \right)=-4 \\ & w-9+4=-4 \\ & w=-4+5 \\ & w=1 \end{align}$ Hence, the system’s solution set is $\left( 1,3,2,1 \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.