Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.2 - Inconsistent and Dependent Systems and Their Applications - Exercise Set - Page 902: 6

Answer

$\left\{ \left( 2,\ -3,\ 7 \right) \right\}$

Work Step by Step

The given system of equations can be written in matrix form as below: $\left[ \left. \begin{matrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ 3 & 4 & 2 \\ \end{matrix} \right|\begin{matrix} 0 \\ 3 \\ 8 \\ \end{matrix} \right]$ Now we will solve this matrix as below to get: $\left[ \left. \begin{matrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \\ \end{matrix} \right|\begin{matrix} 0 \\ 3 \\ 1 \\ \end{matrix} \right]$ $ By,\ 3{{R}_{2}}-{{R}_{3}}\to {{R}_{3}}$ $\left[ \left. \begin{matrix} 2 & -1 & -1 \\ 0 & 5 & 3 \\ 0 & 2 & 1 \\ \end{matrix} \right|\begin{matrix} 0 \\ 6 \\ 1 \\ \end{matrix} \right]$ $ By,\ 2{{R}_{2}}-{{R}_{1}}\to {{R}_{2}}$ $\left[ \left. \begin{matrix} 2 & -1 & -1 \\ 0 & 5 & 3 \\ 0 & 1 & 0 \\ \end{matrix} \right|\begin{matrix} 0 \\ 6 \\ -3 \\ \end{matrix} \right]$ $ By,\ 3{{R}_{3}}-{{R}_{2}}\to {{R}_{3}}$ Convert the matrix into equation form: $\begin{align} 2x-y-z=0 & \\ 5y+3z=6 & \\ y=-3 & \\ \end{align}$ Substitute the value of $ y $ in $5y+3z=6$ to obtain the value of $ z $: $\begin{align} & 5\times \left( -3 \right)+3z=6 \\ & 3z=6+15 \\ & 3z=21 \\ & z=7 \end{align}$ Substitute the value of $ y,z $ in $2x-y-z=0$ to obtain the value of $ x $: $\begin{align} & 2x-\left( -3 \right)-7=0 \\ & 2x=-3+7 \\ & 2x=4 \\ & x=2 \end{align}$ Hence, the solution is $\left\{ \left( 2,\ -3,\ 7 \right) \right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.