Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.1 - The Law of Sines - Exercise Set - Page 720: 6

Answer

The required values are $C=162{}^\circ,a\approx 33.8$, and $b\approx 67.3$.

Work Step by Step

At first we will find C. Property of a triangle: Sum of three angles is $A+B+C=180{}^\circ $ $\begin{align} & A+B+C=180{}^\circ \\ & 6{}^\circ +12{}^\circ +C=180{}^\circ \\ & C=180{}^\circ -18{}^\circ \\ & C=162{}^\circ \end{align}$ Now, to find the remaining sides we will: Use the ratio $\frac{c}{\sin C}$ or $\frac{100}{\sin 162{}^\circ }$, Now we will use the law of sines to find a. $\begin{align} & \frac{a}{\sin A}=\frac{c}{\sin C} \\ & \frac{a}{\sin 6{}^\circ }=\frac{100}{\sin 162{}^\circ } \\ & a=\frac{100\sin 6{}^\circ }{\sin 162{}^\circ } \\ & a=33.8 \end{align}$ Again use the law of sines to find b $\begin{align} & \frac{b}{\sin B}=\frac{c}{\sin C} \\ & \frac{b}{\sin 12{}^\circ }=\frac{100}{\sin 162{}^\circ } \\ & b=\frac{100\sin 12{}^\circ }{\sin 162{}^\circ } \\ & b=67.3 \end{align}$ The solution is $C=162{}^\circ,a\approx 33.8$, and $b\approx 67.3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.