Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.1 - The Law of Sines - Exercise Set - Page 720: 13

Answer

$B=30{}^\circ,a\approx 316.0$ and $b\approx 174.3$.

Work Step by Step

First we will find the value of C Properties of a triangle: The sum of three angles is $A+B+C=180{}^\circ $ $\begin{align} & A+B+C=180{}^\circ \\ & 115{}^\circ +B+35{}^\circ =180{}^\circ \\ & B=180{}^\circ -150{}^\circ \\ & B=30{}^\circ \end{align}$ Now, we will find the remaining sides using the ratio $\frac{c}{\sin C}$,or $\frac{200}{\sin 35{}^\circ }$, Now, we will use the law of sines to find a. $\begin{align} & \frac{a}{\sin A}=\frac{c}{\sin C} \\ & \frac{a}{\sin 115{}^\circ }=\frac{200}{\sin 35{}^\circ } \\ & a=\frac{200\sin 115{}^\circ }{\sin 35{}^\circ } \\ & a\approx 316.0 \end{align}$ Using the law of sines again, we will find b. $\begin{align} & \frac{b}{\sin B}=\frac{c}{\sin C} \\ & \frac{b}{\sin 30{}^\circ }=\frac{200}{\sin 35{}^\circ } \\ & b=\frac{200\sin 30{}^\circ }{\sin 35{}^\circ } \\ & b\approx 174.3 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.