Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.1 - The Law of Sines - Exercise Set - Page 720: 21

Answer

There is one triangle and the solution is ${{C}_{1}}\left( \text{or }C \right)\approx 55{}^\circ,\ B\approx 13{}^\circ,\ \text{ and }\ b\approx 10.2$.

Work Step by Step

Using the law of sines to find C: $\begin{align} & \frac{a}{\sin A}=\frac{c}{\sin C} \\ & \frac{42.1}{\sin 112{}^\circ }=\frac{37}{\sin C} \\ & \sin C=\frac{37\sin 112{}^\circ }{42.1} \\ & \approx 0.8149 \end{align}$ There are two angles between 0° and 180° for which $\sin C=0.8149$ is possible: ${{C}_{1}}\approx 55{}^\circ $ As we know that the sine function is positive in the second quadrant, the second angle is $\begin{align} & {{C}_{2}}\approx 180{}^\circ -55{}^\circ \\ & \approx 125{}^\circ \end{align}$ Here, ${{C}_{2}}$ is impossible, as $112{}^\circ +125{}^\circ =237{}^\circ $. Now, we will find $B$ using ${{C}_{1}}$ and $A=112{}^\circ $. Using the angle sum property of triangles: $\begin{align} & B=180{}^\circ -{{C}_{1}}-A \\ & \approx 180{}^\circ -55{}^\circ -112{}^\circ \\ & \approx 13{}^\circ \end{align}$ Using the law of sines we will find side b: $\begin{align} & \frac{b}{\sin B}=\frac{a}{\sin A} \\ & \frac{b}{\sin 13{}^\circ }=\frac{42.1}{\sin 112{}^\circ } \\ & b=\frac{42.1\sin 13{}^\circ }{\sin 112{}^\circ } \\ & \approx 10.2 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.