Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.1 - The Law of Sines - Exercise Set - Page 720: 12

Answer

$C=60{}^\circ,\ a\approx 34.5,$ and $b\approx 19.9$

Work Step by Step

First we will find the value of C Properties of a triangle: Sum of three angles is $A+B+C=180{}^\circ $ $\begin{align} & A+B+C=180{}^\circ \\ & 85{}^\circ +35{}^\circ +C=180{}^\circ \\ & C=180{}^\circ -120{}^\circ \\ & C=60{}^\circ \end{align}$ Now, we will find the remaining sides, using the ratio $\frac{c}{\sin C}$ or $\frac{30}{\sin 60{}^\circ }$. Now, we will use the law of sines to find a. $\begin{align} & \frac{a}{\sin A}=\frac{c}{\sin C} \\ & \frac{a}{\sin 85{}^\circ }=\frac{30}{\sin 60{}^\circ } \\ & a=\frac{30\sin 85{}^\circ }{\sin 60{}^\circ } \\ & a\approx 34.5 \end{align}$ Using the law of sines again we will find b. $\begin{align} & \frac{b}{\sin B}=\frac{c}{\sin C} \\ & \frac{b}{\sin 35{}^\circ }=\frac{30}{\sin 60{}^\circ } \\ & b=\frac{30\sin 35{}^\circ }{\sin 60{}^\circ } \\ & b\approx 19.9 \end{align}$ The solution is $C=60{}^\circ,\ a\approx 34.5,$ and $b\approx 19.9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.