Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 681: 78

Answer

See the explanation below.

Work Step by Step

We use the identities: $2\sin x\cos x=\sin 2x$ and $1-2{{\sin }^{2}}x={{\cos }^{2}}x-{{\sin }^{2}}x$. Now, the left side can be written as: $\begin{align} & 1-8{{\sin }^{2}}x{{\cos }^{2}}x=1-(2\times 2\sin x\cos x\times 2\sin x\cos x) \\ & =1-2\sin 2x\times \sin 2x \\ & =1-2{{\sin }^{2}}2x \\ & ={{\cos }^{2}}2x-{{\sin }^{2}}2x \end{align}$ We simplify further and use the identity $\cos \alpha \cos \beta -\sin \alpha \sin \beta =\cos \left( \alpha +\beta \right)$. $\begin{align} & {{\cos }^{2}}2x-{{\sin }^{2}}2x=\cos 2x\cos 2x-\sin 2x\sin 2x \\ & =\cos (2x+2x) \\ & =\cos 4x \end{align}$ Thus, the left side is equal to $\cos 4x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.