Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 681: 69

Answer

The right side is equal to $\cos 2x$.

Work Step by Step

By using the trigonometric identity, $\cot x=\frac{\cos x}{\sin x}$ and $\tan x=\frac{sinx}{\cos x}$. $\begin{align} & \frac{\cot x-\tan x}{\cot x+\tan x}=\frac{\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}}{\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}} \\ & =\frac{\frac{\cos x}{\sin x}\frac{\cos x}{\cos x}-\frac{\sin x}{\cos x}\frac{\sin x}{\sin x}}{\frac{\cos x}{\sin x}\frac{\cos x}{\cos x}+\frac{\sin x}{\cos x}\frac{\sin x}{\sin x}} \\ & =\frac{\frac{{{\cos }^{2}}x}{\sin x\cos x}-\frac{{{\sin }^{2}}x}{\sin x\cos x}}{\frac{{{\cos }^{2}}x}{\sin x\cos x}-\frac{{{\sin }^{2}}x}{\sin x\cos x}} \\ & =\frac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x+{{\sin }^{2}}x} \end{align}$ Now, apply trigonometric identities, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and ${{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x$ Simplifying it further, $\begin{align} & \frac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x+{{\sin }^{2}}x}=\frac{\cos 2x}{1} \\ & =\cos 2x \end{align}$ Thus, the right side of the equation is equal to $\cos 2x$. Thus, it is proved that the left and right sides are equal.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.