Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 681: 70

Answer

See the explanation below.

Work Step by Step

By using identities, ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$, $\cot x=\frac{\cos x}{\sin x}$ and $\tan x=\frac{sinx}{\cos x}$. Left side can be written as: $\begin{align} & \frac{2(\tan x-\cot x)}{{{\tan }^{2}}x-{{\cot }^{2}}x}=\frac{2(\tan x-\cot x)}{\left( \tan x+\cot x \right)\left( \tan x-\cot x \right)} \\ & =\frac{2}{\left( \tan x+\cot x \right)} \\ & =\frac{2}{\left( \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \right)}\times \frac{\sin x\cos x}{\sin x\cos x} \\ & =\frac{2\sin x\cos x}{{{\cos }^{2}}x+{{\sin }^{2}}x} \end{align}$ By using the trigonometric identities: ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and $2\sin x\cos x=\sin 2x$ Simplifying it further, $\begin{align} & \frac{2\sin x\cos x}{{{\cos }^{2}}x+{{\sin }^{2}}x}=\frac{\sin 2x}{1} \\ & =\sin 2x \end{align}$ Thus, the left side of the equation is equal to $\sin 2x$. Hence, the left side is equal to $\sin 2x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.