Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 681: 72

Answer

See the explanation below.

Work Step by Step

Now, take the negative sign outside and use the identity, ${{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x$. $\begin{align} & {{\sin }^{2}}\frac{x}{2}-{{\cos }^{2}}\frac{x}{2}=-\left( -{{\sin }^{2}}\frac{x}{2}+{{\cos }^{2}}\frac{x}{2} \right) \\ & =-\left( {{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2} \right) \\ & =-\cos \left( 2\times \frac{x}{2} \right) \\ & =-\cos x \end{align}$ Thus, the left side of the equation is equal to $-\cos x$. Hence, the left side is equal to $-\cos x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.