Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 681: 76

Answer

See the explanation below.

Work Step by Step

We use the trigonometric identities, $\tan x=\frac{\sin x}{\cos x}$ and $\cot x=\frac{\cos x}{\sin x}$. $\tan x+\cot x=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}$ Now, multiplying by $\frac{\sin x}{\sin x}$ and $\frac{\cos x}{\cos x}$. $\begin{align} & \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{\sin x}{\cos x}\times \frac{\sin x}{\sin x}+\frac{\cos x}{\sin x}\times \frac{\cos x}{\cos x} \\ & =\frac{{{\sin }^{2}}x}{\sin x\cos x}+\frac{{{\cos }^{2}}x}{\sin x\cos x} \\ & =\frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x\cos x} \end{align}$ We use the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and multiply the numerator and denominator by 2. $\begin{align} & \frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x\cos x}=\frac{1}{\sin x\cos x} \\ & =\frac{2}{2\sin x\cos x} \end{align}$ After that, use identities: $2\sin x\cos x=\sin 2x$ and $\frac{1}{\sin x}=\csc x$. Simplified further, $\begin{align} & \frac{2}{2\sin x\cos x}=\frac{2}{\sin 2x} \\ & =2\csc 2x \end{align}$ Thus, the left side of the equation is equal to $2\csc 2x$. Hence, the left side is equal to $2\csc 2x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.