Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 671: 99

Answer

The required value is $\frac{4\sqrt{3}+3}{10}$

Work Step by Step

Step 1: As $\sin \theta =\frac{\text{Perpendicular}\left( \text{P} \right)}{\text{Hypotenuse}\left( \text{H} \right)}\,\,$ $\cos \theta =\frac{\text{Base}\left( \text{B} \right)}{\text{Hypotenuse}\left( \text{H} \right)}$ $\tan \theta =\frac{\text{Perpendicular}\left( \text{P} \right)}{\text{Base}\left( \text{B} \right)}$ Let us suppose, ${{\cos }^{-1}}\frac{1}{2}=\alpha $ $\begin{align} & \text{This}\,\text{implies,}\,\frac{1}{2}=\cos \alpha \\ & \cos \alpha =\frac{1}{2}=\frac{\text{B}}{\text{H}} \\ \end{align}$ By using the Pythagoras theorem, ${{\left( \text{Hypotenuse} \right)}^{2}}=\text{ }{{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}$ $\begin{align} & {{\text{H}}^{2}}={{\text{P}}^{2}}+{{\text{B}}^{2}} \\ & {{2}^{2}}={{\text{P}}^{2}}+{{1}^{2}} \\ & {{\text{P}}^{2}}=4-1=3 \\ & \text{P}=\sqrt{3} \\ \end{align}$ $\text{So,}\,\sin \alpha =\frac{\text{P}}{\text{H}}=\frac{\sqrt{3}}{2}$ Step 2: Similarly, ${{\sin }^{-1}}\frac{3}{5}=\beta $ $\begin{align} & \frac{3}{5}=\sin \beta \\ & \sin \beta =\frac{3}{5}=\frac{\text{P}}{\text{H}} \\ \end{align}$ By using the Pythagoras theorem, ${{\left( \text{Hypotenuse} \right)}^{2}}=\text{ }{{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}$ $\begin{align} & {{\text{H}}^{2}}={{\text{P}}^{2}}+{{\text{B}}^{2}} \\ & {{5}^{2}}={{\text{3}}^{2}}+{{\text{B}}^{2}} \\ & {{\text{B}}^{2}}=25-9=16 \\ & \text{B}=\sqrt{16}=4 \\ \end{align}$ $\text{So,}\,\cos \beta =\frac{\text{B}}{\text{H}}=\frac{4}{5}$ Step 3: Using steps 1 and 2, $\sin \left( {{\cos }^{-1}}\frac{1}{2}+{{\sin }^{-1}}\frac{3}{5} \right)$ can be written as: $\sin \left( {{\cos }^{-1}}\frac{1}{2}+{{\sin }^{-1}}\frac{3}{5} \right)=\sin \left( \alpha +\beta \right)$ By using the trigonometric identity, $\sin \left( \alpha +\beta \right)=\sin \alpha \cos \beta +\cos \alpha \sin \beta $ From above steps, $\sin \alpha =\frac{\sqrt{3}}{2}$ $\cos \alpha =\frac{1}{2}$ $\cos \beta =\frac{4}{5}$ $\sin \beta =\frac{3}{5}$ $\begin{align} & \,\sin \left( \alpha +\beta \right)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \\ & =\left( \frac{\sqrt{3}}{2}\times \frac{4}{5} \right)+\left( \frac{1}{2}\times \frac{3}{5} \right) \\ & =\frac{4\sqrt{3}}{10}+\frac{3}{10} \\ & =\frac{4\sqrt{3}+3}{10} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.