Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 671: 98

Answer

See the full explanation below.

Work Step by Step

Left side, $\frac{\sin \left( x-y \right)}{\cos x\cos y}+\frac{\sin \left( y-z \right)}{\cos y\cos z}+\frac{\sin \left( z-x \right)}{\cos z\cos x}$ By using trigonometric identity, $\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $ Left side can be written as $\begin{align} & \frac{\sin \left( x-y \right)}{\cos x\cos y}+\frac{\sin \left( y-z \right)}{\cos y\cos z}+\frac{\sin \left( z-x \right)}{\cos z\cos x}=\frac{\sin x\cos y-\cos x\sin y}{\cos x\cos y}+ \\ & \frac{\sin y\cos z-\cos y\sin z}{\cos y\cos z}+\frac{\sin z\cos x-\cos z\sin x}{\cos z\cos x} \\ & =\frac{\sin x\cos y}{\cos x\cos y}-\frac{\cos x\sin y}{\cos x\cos y}+\frac{\sin y\cos z}{\cos y\cos z}-\frac{\cos y\sin z}{\cos y\cos z}+ \\ & \frac{\sin z\cos x}{\cos z\cos x}-\frac{\cos z\sin x}{\cos z\cos x} \end{align}$ Then, arranging above equation $\begin{align} & \frac{\sin x\cos y}{\cos x\cos y}-\frac{\cos x\sin y}{\cos x\cos y}+\frac{\sin y\cos z}{\cos y\cos z}-\frac{\cos y\sin z}{\cos y\cos z}+\frac{\sin z\cos x}{\cos z\cos x}-\frac{\cos z\sin x}{\cos z\cos x}=\frac{\sin x}{\cos x}-\frac{\sin y}{\cos y}+ \\ & \frac{\sin y}{\cos y}-\frac{\sin z}{\cos z} \\ & +\frac{\sin z}{\cos z}-\frac{\sin x}{\cos x} \\ & =\frac{\sin x}{\cos x}-\frac{\sin x}{\cos x} \\ & +\frac{\sin y}{\cos y}-\frac{\sin y}{\cos y} \\ & +\frac{\sin z}{\cos z}-\frac{\sin z}{\cos z} \\ & =0 \end{align}$ Thus, it is verified that the left side and right side of the given expression are equal.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.