Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 671: 100

Answer

The required value is $-\frac{24}{25}$

Work Step by Step

Step 1: As $\sin \theta =\frac{\text{Perpendicular}\left( \text{P} \right)}{\text{Hypotenuse}\left( \text{H} \right)}\,\,\,$ $\cos \theta =\frac{\text{Base}\left( \text{B} \right)}{\text{Hypotenuse}\left( \text{H} \right)}\,\,$ $\tan \theta =\frac{\text{Perpendicular}\left( \text{P} \right)}{\text{Base}\left( \text{B} \right)}$ Let us suppose ${{\sin }^{-1}}\frac{3}{5}=\alpha $ $\begin{align} & \frac{3}{5}=\sin \alpha \\ & \sin \alpha =\frac{3}{5}=\frac{\text{P}}{\text{H}} \\ \end{align}$ By using the Pythagoras theorem, ${{\left( \text{Hypotenuse} \right)}^{2}}=\text{ }{{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}$ $\begin{align} & {{\text{H}}^{2}}={{\text{P}}^{2}}+{{\text{B}}^{2}} \\ & {{5}^{2}}={{\text{3}}^{2}}+{{\text{B}}^{2}} \\ & {{\text{B}}^{2}}=25-9 \\ & =16 \end{align}$ Now, taking the square root of both sides $\begin{align} & \text{B}=\sqrt{16} \\ & =4 \end{align}$ $\text{So,}\,\cos \alpha =\frac{\text{B}}{\text{H}}=\frac{4}{5}$ Step 2: Similarly, ${{\cos }^{-1}}\left( -\frac{4}{5} \right)=\beta $ $\begin{align} & \text{This}\,\text{implies,}\,-\frac{4}{5}=\cos \beta \\ & \cos \beta =-\frac{4}{5}=\frac{\text{B}}{\text{H}} \\ \end{align}$ By using the Pythagoras theorem, ${{\left( \text{Hypotenuse} \right)}^{2}}=\text{ }{{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}$ $\begin{align} & {{\text{H}}^{2}}={{\text{P}}^{2}}+{{\text{B}}^{2}} \\ & {{5}^{2}}={{\text{P}}^{2}}+{{\left( -4 \right)}^{2}} \\ & {{\text{P}}^{2}}=25-16 \\ & =9 \end{align}$ Now, taking the square root: $\begin{align} & \text{P}=\sqrt{9} \\ & =3 \end{align}$ $\text{So,}\,\sin \beta =\frac{\text{P}}{\text{H}}=\frac{3}{5}$ Step 3: Using steps 1 and 2, $\sin \left[ {{\sin }^{-1}}\frac{3}{5}-{{\cos }^{-1}}\left( -\frac{4}{5} \right) \right]$ can be written as: $\sin \left[ {{\sin }^{-1}}\frac{3}{5}-{{\cos }^{-1}}\left( -\frac{4}{5} \right) \right]=\sin \left( \alpha -\beta \right)$ By using the trigonometric identity, $\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $ From above steps, $\sin \alpha =\frac{3}{5}$ $\cos \beta =-\frac{4}{5}$ $\sin \beta =\frac{3}{5}$ $\begin{align} & \text{Thus,}\,\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta \\ & =\left( \frac{3}{5}\times \left( -\frac{4}{5} \right) \right)-\left( \frac{4}{5}\times \frac{3}{5} \right) \\ & =-\frac{12}{25}-\frac{12}{25} \\ & =-\frac{24}{25} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.