Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 671: 103

Answer

The required value is $\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right)=y\sqrt{1-{{x}^{2}}}+x\sqrt{1-{{y}^{2}}}$.

Work Step by Step

Step 1: As $\sin \theta =\frac{\text{Perpendicular}\left( \text{P} \right)}{\text{Hypotenuse}\left( \text{H} \right)}\,\,$ $\,\cos \theta =\frac{\text{Base}\left( \text{B} \right)}{\text{Hypotenuse}\left( \text{H} \right)}\,$ $\,\,\tan \theta =\frac{\text{Perpendicular}\left( \text{P} \right)}{\text{Base}\left( \text{B} \right)}$ Let us suppose ${{\sin }^{-1}}x=\alpha $ $\begin{align} & x=\sin \alpha \\ & \sin \alpha =\frac{x}{1} \\ & =\frac{\text{P}}{\text{H}} \end{align}$ By using the Pythagorian Theorem, ${{\left( \text{Hypotenuse} \right)}^{2}}=\text{ }{{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}$ $\begin{align} & {{\text{H}}^{2}}={{\text{P}}^{2}}+{{\text{B}}^{2}} \\ & {{1}^{2}}={{x}^{2}}+{{\text{B}}^{2}} \\ & {{\text{B}}^{2}}=1-{{x}^{2}} \\ & \text{B}=\sqrt{1-{{x}^{2}}} \\ \end{align}$ Then, $\begin{align} & \cos \alpha =\frac{\text{B}}{\text{H}} \\ & =\frac{\sqrt{1-{{x}^{2}}}}{1} \\ & =\sqrt{1-{{x}^{2}}} \end{align}$ Step 2: Similarly, ${{\cos }^{-1}}y=\beta $. It implies, $\begin{align} & \,y=\cos \beta \\ & \cos \beta =\frac{y}{1} \\ & =\frac{\text{B}}{\text{H}} \end{align}$ By using the Pythagorian Theorem, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}$ $\begin{align} & {{\text{H}}^{2}}={{\text{P}}^{2}}+{{\text{B}}^{2}} \\ & {{1}^{2}}={{\text{P}}^{2}}+{{y}^{2}} \\ & {{\text{P}}^{2}}=1-{{y}^{2}} \\ & \text{P}=\sqrt{1-{{y}^{2}}} \\ \end{align}$ Then, $\begin{align} & \sin \beta =\frac{\text{P}}{\text{H}} \\ & =\frac{\sqrt{1-{{y}^{2}}}}{1} \end{align}$ Step 3: Using steps 1 and 2, $\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right)$ can be written as: $\cos \left( {{\sin }^{-1}}x-{{\cos }^{-1}}y \right)=\cos \left( \alpha -\beta \right)$ By using the trigonometric identity, $\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $ From above steps, $\sin \alpha =x$ $\cos \alpha =\sqrt{1-{{x}^{2}}}$ $\cos \beta =y$ $\sin \beta =\sqrt{1-{{y}^{2}}}$ $\begin{align} & \,\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta \\ & =\left( \sqrt{1-{{x}^{2}}}\times y \right)+\left( x\times \sqrt{1-{{y}^{2}}} \right) \\ & =y\sqrt{1-{{x}^{2}}}+x\sqrt{1-{{y}^{2}}} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.