Answer
$f(x)=(0.8)^{x}=(\frac{4}{5})^{x}$
$(-4,\frac{625}{256})$,$(-2,\frac{25}{16})$,$(-1,\frac{5}{4})$,$(1,\frac{4}{5})$,$(2,\frac{16}{25})$,$(4,\frac{256}{625})$
Graph is attached
Work Step by Step
$f(x)=(0.8)^{x}=(\frac{4}{5})^{x}$
Lets put $x=-4,-2,-1,1,2,4$
$f(-4) = (\frac{4}{5})^{-4} = \frac{625}{256}$
$f(-2) = (\frac{4}{5})^{-2} = \frac{25}{16}$
$f(-1) = (\frac{4}{5})^{-1} = \frac{5}{4}$
$f(1) = (\frac{4}{5})^{1} = \frac{4}{5}$
$f(2) = (\frac{4}{5})^{2} = \frac{16}{25}$
$f(4) = (\frac{4}{5})^{4} = \frac{256}{625}$
Plot the set of points